A review on the fluid structure interaction of circular plates using numerical methods

Anju V Nair(1*), Abdul Rahman Mohd Kasim(2), Mohd Zuki Salleh(3),

(1) Universiti Teknologi Malaysia. 81310 Skudai, Johor, Malaysia
(2) Universiti Teknologi Malaysia. 81310 Skudai, Johor, Malaysia
(3) Universiti Teknologi Malaysia. 81310 Skudai, Johor, Malaysia
(*) Corresponding Author

Abstract


Fluid structure interaction is a nonlinear multi physics phenomenon that have wide range of applications in science and engineering fields. This article presents the development of numerical methods to solve the fluid structure interaction problem deals with the vibration analysis of plate structures in contact with fluid. The modeling of fluid and structure are essential to study the fluid structure interaction problems. The development of suitable mathematical models and their validation are discussed herewith.


Keywords


Fluid structure interaction; plates; added virtual mass incremental factor; natural frequency

Full Text:

PDF

References


Amabili, M. (2001). Vibrations of circular plates resting on a sloshing liquid: solution of the fully coupled problem. Journal of Sound and Vibration, 245(2), 261–283.

Amabili, M., Frosali, G., & Kwak, M. K. (1996). Free vibrations of annular plates coupled with fluids. Journal of Sound and Vibration, 191(5), 825–846.

Amabili, M., & Kwak, M. K. (1996). Free vibrations of circular plates coupled with liquids: revising the Lamb problem. Journal of Fluids and Structures, 10(7), 743–761.

Baghdasaryan, G. Y., Mikilyan, M. A., Saghoyan, R. O., Cestino, E., Frulla, G., & Marzocca, P. (2015). Nonlinear LCO “amplitude–frequency” characteristics for plates fluttering at supersonic speeds. International Journal of Non-Linear Mechanics, 77, 51–60.

Bailoor, S., Annangi, A., Seo, J. H., & Bhardwaj, R. (2017). Fluid–structure interaction solver for compressible flows with applications to blast loading on thin elastic structures. Applied Mathematical Modelling, 52, 470–492.

Bathe, K.-J. rgen. (1998). Fluid-structure interactions. Mechanical Engineering, 120(04), 66–68.

Chang, T.-P., & Liu, M.-F. (2000). On the natural frequency of a rectangular isotropic plate in contact with fluid. Journal of Sound and Vibration, 236(3), 547–553.

Chen, J., & Li, Q. S. (2016). Analysis of flutter and nonlinear dynamics of a composite laminated plate. International Journal of Structural Stability and Dynamics, 16(06), 1550019.

Cheung, Y. K., & Zhou, D. (2002). Hydroelastic vibration of a circular container bottom plate using the Galerkin method. Journal of Fluids and Structures, 16(4), 561–580.

Currao, G. M. D., Neely, A. J., Kennell, C. M., Gai, S. L., & Buttsworth, D. R. (2019). Hypersonic fluid–structure interaction on a cantilevered plate with shock impingement. AIAA Journal, 57(11), 4819–4834.

Dessi, D., & Mazzocconi, S. (2015). Aeroelastic behavior of a flag in ground effect. Journal of Fluids and Structures, 55, 303–323.

Fritz, R. J., & Kiss, E. (1966). The vibration response of a cantilevered cylinder surrounded by an annular fluid. Knolls Atomic Power Lab., Schenectady, NY.

Ghoman, S. S., & Azzouz, M. S. (2012a). Supersonic aerothermoelastic nonlinear flutter study of curved panels: frequency domain. Journal of Aircraft, 49(4), 1075–1090.

Ghoman, S. S., & Azzouz, M. S. (2012b). Supersonic aerothermoelastic nonlinear flutter study of curved panels: time domain. Journal of Aircraft, 49(4), 1178–1183.

Jeong, K.-H. (2003). Free vibration of two identical circular plates coupled with bounded fluid. Journal of Sound and Vibration, 260(4), 653–670.

Kerboua, Y., Lakis, A. A., Thomas, M., & Marcouiller, L. (2008). Vibration analysis of rectangular plates coupled with fluid. Applied Mathematical Modelling, 32(12), 2570–2586.

Kolsky, H. (1949). An investigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society. Section B, 62(11), 676.

Kosík, A., Feistauer, M., Hadrava, M., & Horáček, J. (2015). Numerical simulation of the interaction between a nonlinear elastic structure and compressible flow by the discontinuous Galerkin method. Applied Mathematics and Computation, 267, 382–396.

Kwak, M. K. (1991). Vibration of circular plates in contact with water.

Kwak, M. K. (1997). Hydroelastic vibration of circular plates. Journal of Sound and Vibration, 201(3), 293–303.

Kwak, M. K., & Kim, K. C. (1991). Axisymmetric vibration of circular plates in contact with fluid. Journal of Sound and Vibration, 146(3), 381–389.

Lavrov, A., & Guedes Soares, C. (2016). Modelling the heave oscillations of vertical cylinders with damping plates. International Journal of Maritime Engineering, 158(A3), A187–A197.

Lighthill, M. J. (1953). Oscillating airfoils at high Mach number. Journal of the Aeronautical Sciences, 20(6), 402–406.

Liu, M.-F., & Chang, T.-P. (2004). Axisymmetric vibration of a varying-thickness circular plate in contact with fluid. Mechanics Based Design of Structures and Machines, 32(1), 39–56.

Liu, X., Wang, Y., Waite, T. D., & Leslie, G. (2016). Fluid structure interaction analysis of lateral fibre movement in submerged membrane reactors. Journal of Membrane Science, 504, 240–250.

Maity, D., & Bhattacharyya, S. K. (2003). A parametric study on fluid–structure interaction problems. Journal of Sound and Vibration, 263(4), 917–935.

Mehryan, S. A. M., Alsabery, A., Modir, A., Izadpanahi, E., & Ghalambaz, M. (2020). Fluid-structure interaction of a hot flexible thin plate inside an enclosure. International Journal of Thermal Sciences, 153, 106340.

Meirovitch, L. (1975). Elements of vibration analysis. McGraw-Hill Science, Engineering & Mathematics.

Nair, A. V, Kasim, A. R. M., & Salleh, M. Z. (2017). Vibration analysis of circular plates in contact with fluid: A numerical approach. IOP Conference Series. Materials Science and Engineering (Online), 203(1).

Resler Jr, E. L., & Sears, W. R. (1958). The prospects for magneto-aerodynamics. Journal of the Aerospace Sciences, 25(4), 235–245.

Ruiz-Díez, V., Hernando-García, J., Ababneh, A., Seidel, H., & Sánchez-Rojas, J. L. (2016). In-liquid characterization of in-plane and high order out-of-plane modes of AlN-based square microplates. Microsystem Technologies, 22(7), 1701–1708.

Sharan, S. K., & Gladwell, G. M. L. (1985). A general method for the dynamic response analysis of fluid-structure systems. Computers & Structures, 21(5), 937–943.

Vedeneev, V., Shishaeva, A., Kuznetsov, K., & Aksenov, A. (2014). Nonlinear Multi-Modal Panel Flutter Oscillations at Low Supersonic Speeds. Fluids Engineering Division Summer Meeting, 46223, V01BT12A008.

Wang, L., Currao, G. M. D., Han, F., Neely, A. J., Young, J., & Tian, F.-B. (2017). An immersed boundary method for fluid–structure interaction with compressible multiphase flows. Journal of Computational Physics, 346, 131–151.

Xie, D., & Xu, M. (2015). A comparison of numerical and semi-analytical proper orthogonal decomposition methods for a fluttering plate. Nonlinear Dynamics, 79(3), 1971–1989.




DOI: http://dx.doi.org/10.33292/amm.v2i2.89

Article Metrics

Abstract view : 0 times
PDF - 1 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Annals of Mathematical Modeling

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Annals of Mathematical Modeling is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejournal.ressi.id/index.php/aam.

 

View My Stats JAMM